Novel Precomputation Schemes for Elliptic Curve Cryptosystems
نویسندگان
چکیده
We present an innovative technique to add elliptic curve points with the form P Q ± , and discuss its application to the generation of precomputed tables for the scalar multiplication. Our analysis shows that the proposed schemes offer, to the best of our knowledge, the lowest costs for precomputing points on both single and multiple scalar multiplication and for various elliptic curve forms, including the highly efficient Jacobi quartics and Edwards curves.
منابع مشابه
Efficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملCOMPARISON OF ALGORITHMS FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER FINITE FIELDS OF GF(2m)
For elliptic curve cryptosystems does exist many algorithms, that computes the scalar multiplication k·P. Some are better for a software solution and others are better for a hardware solution. In this paper we compare algorithms without precomputation for the scalar multiplication on elliptic curves over a finite field of GF(2). At the end we show which algorithm is the best for a hardware or s...
متن کاملSpeeding Up Elliptic Scalar Multiplication with Precomputation
It is often required in many elliptic curve cryptosystems to compute kG for a xed point G and a random integer k. In this paper we present improved algorithms for such elliptic scalar multiplication. Implementation results on Pentium II and Alpha 21164 microprocessors are also provided to demonstrate the presented improvements in actual implementations.
متن کاملPerformance Analysis of the Postcomputation- Based Generic-Point Parallel Scalar Multiplication Method
A Postcomputation-based generic-point parallel scalar multiplication method has recently been proposed for high-performance end servers that employ parallel elliptic curve cryptoprocessors. The sequential precomputation overheads, in the postcomputation-based method, are replaced with parallelizable postcomputations. This paper analyzes the performance of the postcomputation-based method with 1...
متن کامل